Baroclinic Instability in the Venus Atmosphere

1984 ◽  
Vol 41 (15) ◽  
pp. 2310-2333 ◽  
Author(s):  
Richard E. Young ◽  
Howard Houben ◽  
Leonhard Pfister
2014 ◽  
Vol 119 (8) ◽  
pp. 1950-1968 ◽  
Author(s):  
Norihiko Sugimoto ◽  
Masahiro Takagi ◽  
Yoshihisa Matsuda

Author(s):  
Vladimir Zeitlin

It is shown how the standard RSW can be ’augmented’ to include phase transitions of water. This chapter explains how to incorporate extra (convective) vertical fluxes in the model. By using Lagrangian conservation of equivalent potential temperature condensation of the water vapour, which is otherwise a passive tracer, is included in the model and linked to convective fluxes. Simple relaxational parameterisation of condensation permits the closure of the system, and surface evaporation can be easily included. Physical and mathematical properties of thus obtained model are explained, and illustrated on the example of wave scattering on the moisture front. The model is applied to ’moist’ baroclinic instability of jets and vortices. Condensation is shown to produce a transient increase of the growth rate. Special attention is paid to the moist instabilities of hurricane-like vortices, which are shown to enhance intensification of the hurricane, increase gravity wave emission, and generate convection-coupled waves.


Author(s):  
Vladimir Zeitlin

Notions of linear and nonlinear hydrodynamic (in)stability are explained and criteria of instability of plane-parallel flows are presented. Instabilities of jets are investigated by direct pseudospectral collocation method in various flow configurations, starting from the classical barotropic and baroclinic instabilities. Characteristic features of instabilities are displayed, as well as typical patterns of their nonlinear saturation. It is shown that in the Phillips model of Chapter 5, new ageostrophic Rossby–Kelvin and shear instabilities appear at finite Rossby numbers. These instabilities are interpreted in terms of resonances among waves counter-propagating in the flow. It is demonstrated that the classical inertial instability is a specific case of ageostrophic baroclinic instability. At the equator it appears also in the barotropic configuration, and is related to resonances of Yanai waves. The nature of the inertial instability in terms of trapped modes is established. A variety of instabilities of density fronts is displayed.


Author(s):  
Vladimir Zeitlin

After analysis of general properties of horizontal motion in primitive equations and introduction of principal parameters, the key notion of geostrophic equilibrium is introduced. Quasi-geostrophic reductions of one- and two-layer rotating shallow-water models are obtained by a direct filtering of fast inertia–gravity waves through a choice of the time scale of motions of interest, and by asymptotic expansions in Rossby number. Properties of quasi-geostrophic models are established. It is shown that in the beta-plane approximations the models describe Rossby waves. The first idea of the classical baroclinic instability is given, and its relation to Rossby waves is explained. Modifications of quasi-geostrophic dynamics in the presence of coastal, topographic, and equatorial wave-guides are analysed. Emission of mountain Rossby waves by a flow over topography is demonstrated. The phenomena of Kelvin wave breaking, and of soliton formation by long equatorial and topographic Rossby waves due to nonlinear effects are explained.


2014 ◽  
Vol 44 (2) ◽  
pp. 445-463 ◽  
Author(s):  
Sören Thomsen ◽  
Carsten Eden ◽  
Lars Czeschel

Abstract Mooring observations and model simulations point to an instability of the Labrador Current (LC) during winter, with enhanced eddy kinetic energy (EKE) at periods between 2 and 5 days and much less EKE during other seasons. Linear stability analysis using vertical shear and stratification from the model reveals three dominant modes of instability in the LC: 1) a balanced interior mode with along-flow wavelengths of about 30–45 km, phase velocities of 0.3 m s−1, maximal growth rates of 1 day−1, and surface-intensified but deep-reaching amplitudes; 2) a balanced shallow mode with along-flow wavelengths of about 0.3–1.5 km, phase velocities of 0.55 m s−1, about 3 times larger growth rates, but amplitudes confined to the mixed layer (ML); and 3) an unbalanced symmetric mode with the largest growth rates, vanishing phase speeds, and along-flow structure, and very small cross-flow wavelengths, also confined to the ML. Both balanced modes are akin to baroclinic instability but operate at moderate-to-small Richardson numbers Ri with much larger growth rates as for the quasigeostrophic limit of Ri ≫ 1. The interior mode is found to be responsible for the instability of the LC during winter. Weak stratification and enhanced vertical shear due to local buoyancy loss and the advection of convective water masses from the interior result in small Ri within the LC and up to 3 times larger growth rates of the interior mode in March compared to summer and fall conditions. Both the shallow and the symmetric modes are not resolved by the model, but it is suggested that they might also play an important role for the instability in the LC and for lateral mixing.


Sign in / Sign up

Export Citation Format

Share Document